Adhesion Proteins - An Impact on Skeletal Myoblast Differentiation
نویسندگان
چکیده
Formation of mammalian skeletal muscle myofibers, that takes place during embryogenesis, muscle growth or regeneration, requires precise regulation of myoblast adhesion and fusion. There are few evidences showing that adhesion proteins play important role in both processes. To follow the function of these molecules in myoblast differentiation we analysed integrin alpha3, integrin beta1, ADAM12, CD9, CD81, M-cadherin, and VCAM-1 during muscle regeneration. We showed that increase in the expression of these proteins accompanies myoblast fusion and myotube formation in vivo. We also showed that during myoblast fusion in vitro integrin alpha3 associates with integrin beta1 and ADAM12, and also CD9 and CD81, but not with M-cadherin or VCAM-1. Moreover, we documented that experimental modification in the expression of integrin alpha3 lead to the modification of myoblast fusion in vitro. Underexpression of integrin alpha3 decreased myoblasts' ability to fuse. This phenomenon was not related to the modifications in the expression of other adhesion proteins, i.e. integrin beta1, CD9, CD81, ADAM12, M-cadherin, or VCAM-1. Apparently, aberrant expression only of one partner of multiprotein adhesion complexes necessary for myoblast fusion, in this case integrin alpha3, prevents its proper function. Summarizing, we demonstrated the importance of analysed adhesion proteins in myoblast fusion both in vivo and in vitro.
منابع مشابه
Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System
Decellularisation of skeletal muscle provides a system to study the interactions of myoblasts with muscle extracellular matrix (ECM). This study describes the efficient decellularisation of quadriceps muscle with the retention of matrix components and the use of this matrix for myoblast proliferation and differentiation under serum free culture conditions. Three decellularisation approaches wer...
متن کاملAlginate type and RGD density control myoblast phenotype.
Alginates are being increasingly used for cell encapsulation and tissue engineering applications; however, these materials cannot specifically interact with mammalian cells. We have covalently modified alginates of varying monomeric ratio with RGD-containing cell adhesion ligands using carbodiimide chemistry to initiate cell adhesion to these polymers. We hypothesized that we could control the ...
متن کاملBidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts.
A major aspect of indirect flight muscle formation during adult Drosophila myogenesis involves transition of a semi-differentiated and proliferating pool of myoblasts to a mature myoblast population, capable of fusing with nascent myotubes and generating mature muscle fibers. Here we examine the molecular genetic programs underlying these two phases of myoblast differentiation. We show that the...
متن کاملAdhesion molecule Kirrel3/Neph2 is required for the elongated shape of myocytes during skeletal muscle differentiation.
Kirrel/Neph proteins are evolutionarily conserved members of the immunoglobulin superfamily of adhesion proteins. Kirrel3 is the mouse orthologue of Dumbfounded (Duf), a family member that regulates myoblast pre-fusion events in Drosophila. Yet, the role of Kirrel3 in mammalian myogenesis has not been demonstrated. Experiments performed here indicate that the mouse Kirrel3 protein regulates mor...
متن کاملEffect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell
Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...
متن کامل